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Abstract

Many vibration text books give expressions for the mode shape functions of uniform Euler–Bernoulli beams. However,

the common forms of these expressions permit the evaluation of only the first 12 modes or so due to numerical issues. This

article presents alternative and approximate forms for the evaluation of beam mode shape functions that are numerically

stable. Although the approximations allow numerical evaluation of the mode shapes for all modes of vibration, the penalty

is that some errors occur in the calculations for low-order modes, and these errors are quantified. Beams with combinations

of the classical boundary conditions of clamped, free, pinned, and sliding are covered.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The numerical evaluation of mode shape functions is important when modeling a structure subject to forced
vibration, as the response can be represented as a summation of modes. Many vibration text books give
expressions for the mode shape functions of uniform Euler–Bernoulli beams, for example Refs. [1–3].
However, the common forms of these expressions permit the evaluation of only the first 12 modes or so due to
numerical issues. Shankar and Keane [4] discussed this problem when they calculated the individual modal
responses of beams that make up a large truss structure. They reformulated the expression for the mode shape
of a free–free beam so that it could be numerically evaluated up to the first two hundredth mode or so.
Warburton [5], also presents mode shape expressions for transverse vibration in plates based on beam mode-
shape functions, which include some boundary conditions that are numerical stable up to a high number of
modes, but eventually become unstable for a very high number of modes. Tang [6] has also discussed the
problem of numerically evaluating high-order beam mode shapes, and gave expressions for beam mode shape
functions with some other boundary conditions. However, these expressions, and others found in the literature
cannot be used to numerically evaluate very-high-order beam mode shapes.

This article discusses the reasons for the numerical problems and presents alternative, compact mode shape
expressions for beams with a combination of clamped, free, pinned, and sliding boundary conditions based on
the method described by Shankar and Keane [4]. Although these expressions are useful for up to the first two
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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hundred modes or so, they also suffer from numerical problems for higher modes. To overcome these
problems, approximate expressions for the mode shape functions are derived. These allow numerical
evaluation of the mode shapes for all modes of beam vibration. However, the penalty is that some errors occur
in the calculations for low-order modes, and these errors are quantified. The expressions for the mode shapes
given in this article are useful for slender beams where Euler–Bernoulli theory applies, which is when the
wavelength of a flexural wave is greater than about six times the thickness of the beam [7]. In terms of the nth
mode of vibration the criterion is approximately l/t4np where l and t are the length and thickness of the beam,
respectively. The mode shape expressions can also be used for the mode shapes of thin plates which are
approximated by Euler–Bernoulli beam mode shapes.

2. Beam vibration

The equation of motion of free vibration of a uniform Euler–Bernoulli beam is given by

EI
q4wðxÞ
qx4

þ rS
q2wðx; tÞ

qt2
¼ 0, (1)

where E, I, r, and S are the Young’s modulus, second moment of area, density, and cross-sectional area,
respectively. Assuming time harmonic motion at angular frequency o of the form ejot, but neglecting it in the
subsequent expressions for clarity, the displacement of the beam can be written in terms of evanescent and
propagating waves as

W ðxÞ ¼ A1e
kx þ A2e

�kx þ A3e
jkx þ A4e

�jkx, (2)

where A1 is an evanescent wave decaying to the left, A2 is an evanescent wave decaying to the right, A3 is a wave
propagating to the left and A4 is a wave propagating to the right; k is the flexural wavenumber and is given by
k ¼ ðrS=EIÞ1=4o1=2. By applying the boundary conditions, the wave amplitudes A1–A4 relative to one of the
wave amplitudes can be calculated at a natural frequency, and hence the mode shape function determined. For
beams with boundary conditions other than pinned, the mode shape function will include evanescent waves and
it is these that cause a problem with the numerical evaluation of higher-order mode shapes.

It is more usual in text books for the displacement to be written as

W ðxÞ ¼ A sin kxþ B cos kxþ C sinh kxþD cosh kx, (3)

where the trigonometric functions represent the propagating waves, and the hyperbolic functions represent the
evanescent waves. As an example, the mode shape function of a clamped–clamped beam is given by

fnðxÞ ¼ ðcosh knx� cos knxÞ � snðsinh knx� sin knxÞ, (4)

where

sn ¼
cosh knl � cos knl

sinh knl � sin knl
, (5a)

in which the subscript n denotes the nth mode of vibration. The problem with this formulation is that when knl

is large the hyperbolic functions become very large; the trigonometric functions are, of course, less than or
equal to unity. Eq. (5a), for large n becomes:

sn �
cosh knl

sinh knl
¼

eknl þ e�knl

eknl � e�knl
� 1 (5b)

and Eq. (4) reduces to

fnðxÞ � ðcosh knx� cos knxÞ � ðsinh knx� sin knxÞ. (5c)

When knlb1 and x � l, this becomes:

fnðlÞ � cosh knl � sinh knl, (6)

which means that a small number is obtained by subtracting two very large numbers. This leads to gross
inaccuracy in the mode shape for positions on the beam close to where x ¼ l. The problem can be overcome by
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rearranging the equations so that subtraction of large, near equal terms does not occur. This is again
illustrated using a clamped–clamped beam. Eq. (5a) can be rewritten as

sn ¼ ½1þ u�, (7)

where

u ¼
e�knl � cos knl þ sin knl

sinh knl � sin knl
,

which tends to zero when knlb1. Thus Eq. (4) can be written as

fnðxÞ ¼ e�knx � cos knxþ ½1þ u� sin knx� u sinh knx. (8)

Eq. (8) is an exact solution for the nth mode shape. This form is more accurate than Eq. (4) for high n;
however, it is still numerically ill-conditioned for very high n (greater than about 200 using double precision
floating point arithmetic with MATLAB) because of the term u sinh knx. The variable u tends to zero as kn

increases and sinh knl becomes very large so their product yields a finite quantity. The numerical ill-
conditioning occurs when the argument of the hyperbolic functions leads to a quantity larger than that which
can be represented by the machine (in most programming languages this number is about 1.79� 10308), Note
that cosh 710 � sinh 710 � 1:117� 10308.

By making an approximation, Eq. (8) can be modified so that it is numerically well-conditioned for n-N

(providing, of course, that Euler–Bernoulli beam theory is still valid for the beam under consideration). First
note that u sinh knx can be written as

u sinh knx ¼
e�knl � cos knl þ sin knl

sinh knl � sin knl

� �
sinh knx. (9)

For large kn, sin knl can be neglected compared to sinh knl, in the denominator of Eq. (9). By also making the
approximation sinh knx= sinh knl � eknðx�lÞ, equations (8) and (9) combine to give

fnðxÞ ¼ e�knx � cos knxþ ½1þ u� sin knx

� ½e�knl � cos knl þ sin knl�eknðx�lÞ. ð10Þ

The approximation introduces an error in the mode shape calculation for the first few modes. However, this
error tends to zero as kn increases. The mode shape functions are normalised such that

R l

0 f
2
nðxÞdx ¼ l, thus to

quantify the error the following expression is used:

e ¼

R l

0 f
2
nðxÞdx�

R l

0 f
2
nðxÞapprox: dxR l

0
f2

nðxÞdx

�����
�����, (11)

which simplifies to e ¼ jl � l�=lj where l* is a length that is slightly different to the actual length of the beam.
The error for the first six modes using Eq. (10) is given in Table 1. It can be seen for n45, the approximation
for the mode shape has negligible error.

Similar expressions for mode shape functions can be calculated for beams with other boundary conditions
in a straightforward manner, and these are given in Table 2 for combinations of the classical boundary
Table 1

Error in using approximate mode shape function for a clamped–clamped beam

n e ¼ jl � l�=lj

1 O(10�2)

2 O(10�3)

3 O(10�5)

4 O(10�6)

5 O(10�8)

6 oO(10�9)
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Table 2

Natural frequencies and mode shape functions for a uniform Euler–Bernoulli beam with various boundary conditions

Boundary condition Equations n knl Order of error

(1) fð0Þ ¼ fðlÞ ¼ f0ð0Þ ¼ f0ðlÞ ¼ 0 1 4.73004 10�2

(2) cos knl cosh knl ¼ 1 2 7.85320 10�3

(3) fðxÞ ¼ a1 � b1 þ ½1þ u1�b2 � u1c2 3 10.9956 10�5

(4) fðxÞ ¼ a1 � b1 þ ½1þ u1�b2 � ½a3 � b3 þ b4�d1 4 14.1372 10�6

5 17.2788 10�8

6; 7; . . . (2n+1)p/2 p10�9

(1) fð0Þ ¼ f00ðlÞ ¼ f0ð0Þ ¼ f000ðlÞ ¼ 0 1 1.87510 10�2

(2) cos knl cosh knl ¼ �1 2 4.69409 10�3

(3) fðxÞ ¼ a1 � b1 þ ½1þ u1�b2 � u2c2 3 7.85476 10�4

(4) fðxÞ ¼ a1 � b1 þ ½1þ u1�b2 � ½a3 � b3 þ b4�d1 4 10.9955 10�5

5 14.1372 10�8

6; 7; . . . (2n�1)p/2 p10�9

(1) fð0Þ ¼ f0ðlÞ ¼ f0ð0Þ ¼ f000ðlÞ ¼ 0 1 2.36502 100

(2) tan knl þ tanh knl ¼ 0 2 5.49780 10�2

(3) fðxÞ ¼ a1 � b1 þ ½1þ u4�b2 � u4c2 3 8.63938 10�4

(4) fðxÞ ¼ a1 � b1 þ ½1þ u4�b2 � d2 4 11.7810 10�5

5 14.9226 10�7

6; 7; . . . (4n�1)p/4 p10�8

(1) f00ð0Þ ¼ f00ðlÞ ¼ f000ð0Þ ¼ f000ðlÞ ¼ 0 1 3.92660 10�4

(2) tan knl � tanh knl ¼ 0 2 7.06858 10�6

(3) fðxÞ ¼ a1 � b1 þ ½1þ u4�b2 � u4c2 3 10.2102 10�9

(4) fðxÞ ¼ a1 � b1 þ ½1þ u4�b2 � d2 4 13.3518 10�12

5 16.4934 p10�15

6; 7; . . . (4n+1)p/4 p10�15

(1) f00ð0Þ ¼ f00ðlÞ ¼ f000ð0Þ ¼ f000ðlÞ ¼ 0 1 4.73004 10�2

(2) cos knl cosh knl ¼ 1 2 7.85320 10�3

(3) fðxÞ ¼ a1 þ b1 � ½1þ u1�b2 � u1c2 3 10.9956 10�5

(4) fðxÞ ¼ a1 þ b1 � ½1þ u1�b2 � ½a3 � b3 þ b4�d1 4 14.1372 10�6

5 17.2788 10�8

6; 7; . . . (2n+1)p/2 p10�9

(1) f00ð0Þ ¼ f0ðlÞ ¼ f000ð0Þ ¼ f000ðlÞ ¼ 0 1 2.36502 10�1

(2) tan knl þ tanh knl ¼ 0 2 5.49780 10�2

(3) fðxÞ ¼ a1 þ b1 � ½1þ u4�b2 � u4c2 3 8.63938 10�4

(4) fðxÞ ¼ a1 þ b1 � ½1þ u4�b2 � d2 4 11.7810 10�5

5 14.9226 10�7

6; 7; . . . (4n�1)p/4 p10�8

(1) fð0Þ ¼ fðlÞ ¼ f0ð0Þ ¼ f00ðlÞ ¼ 0 1 3.92660 10�6

(2) tan knl � tanh knl ¼ 0 2 7.06858 10�9

(3) fðxÞ ¼ a1 þ b1 � ½1þ u3�b2 � u3c2 3 10.2102 10�12

(4) fðxÞ ¼ a1 þ b1 � ½1þ u3�b2 � d2 4 13.3518 10�15

5 16.4934 p10�15

6; 7; . . . (4n+1)p/4 p10�15

(1) f0ð0Þ ¼ f0ðlÞ ¼ f000ð0Þ ¼ f000ðlÞ ¼ 0

(2) sinknl sinhknl ¼ 0 1; 2; . . . np —

(3) fðxÞ ¼
ffiffiffi
2
p

b1

(1) f0ð0Þ ¼ fðlÞ ¼ f000ð0Þ ¼ f00ðlÞ ¼ 0

(2) cosknl coshknl ¼ 0 1; 2; . . . (2n�1)p/2 —

(3) fðxÞ ¼
ffiffiffi
2
p

b1

(1) fð0Þ ¼ fðlÞ ¼ f00ð0Þ ¼ f00ðlÞ ¼ 0

(2) sinknl sinhknl ¼ 0 1; 2; . . . np —

(3) fðxÞ ¼
ffiffiffi
2
p

b2
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(1) Boundary conditions; (2) characteristic or frequency equation; (3) mode shape (exact); (4) mode shape (approximation).

The variables in Table 2 are given by

a1 ¼ e�knx; a2 ¼ eknx; a3 ¼ e�knl ; a4 ¼ eknl ,

b1 ¼ cos knx; b2 ¼ sin knx; b3 ¼ cos knl; b4 ¼ sin knl,

c1 ¼ cosh knx; c2 ¼ sinh knx; c3 ¼ cosh knl; c4 ¼ sinh knl,

d1 ¼ eknðx�lÞ; d2 ¼ eknðx�2lÞ,

u1 ¼
a3 � b3 þ b4

c4 � b4
; u2 ¼

�a3 � b3 � b4

c3 þ b3
; u3 ¼

a3

c4
; u4 ¼

a3

c3
.

Table 2 (continued)
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conditions. For completeness, the values of knl corresponding to the natural frequencies are also given. Similar
tables giving solutions to the natural frequency equations can be found in text books, for example Refs. [3,8,9].
The last column in the table is the error in the approximate mode shape functions calculated using Eq. (11).

3. Concluding remarks

In this article, the problem of evaluating beam mode shape functions at high frequencies has been discussed.
Alternative expressions that do not suffer from numerical ill-conditioning up to about 200 modes have been
presented and approximate expressions valid up to an infinitely high frequency (provided that Euler–Bernoulli
beam theory applies) have been derived. The results have been tabulated for ease of reference.
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